Home » Luftwaffe

Category Archives: Luftwaffe

Oberstleutnant Max Baeßler (1893-?)

member and forum staff Askropp, writes a lot on the subforum Dieter Zinke Axis Biography . If you are looking for officer why dont take a look. You might find what you are looking for. Below you find almost anything you need about Max Baessler.

Max Baessler

Max Robert Karl Baeßler
* 03.02.1893 Pleische / Niederschlesien
† [?]

Vater: Gustav Baeßler (1863-?), Lehrer
Mutter: Anna Baeßler, geb. Fabich (1869-1936)
30.09.1919 Heirat mit Else Woide (1896-?)
1 Sohn (*1920), 1 Tochter (*1922)

02.10.1911 Kanonier
27.01.1913 Gefreiter
09.09.1914 Unteroffizier
01.04.1917 Sergeant
01.07.1920 Feuerwerker
13.03.1924 Charakter als Leutnant beim Zeugamt
24.03.1937 Oberleutnant (WE) mit RDA vom 01.12.1927
01.03.1938 Hauptmann (WE)
01.11.1940 Major (WE)
10.01.1944 Major (W) mit RDA vom 01.11.1940
01.04.1944 Major mit RDA vom 01.11.1940 (73)
09.11.1944 Oberstleutnant

02.10.1911 Eintritt in die 2. (r) / Feldartillerieregiment 42 (Schweidnitz)
01.10.1913 in der 2. (r) / Feldartillerieregiment 35 (Deutsch Eylau)
08.08.1915 erkrankt, danach Lazarett
05.10.1915 zugeteilt der Ersatzabteilung des Feldartillerieregiments 42
05.12.1915 in der 5. / Feldartillerieregiment 42
13.02.1917 erkrankt, danach Lazarett
01.04.1917 zugeteilt dem Ersatzabteilung des Feldartillerieregiments 42
03.07.1917 beim Artilleriedepot Breslau
15.03.1918 im Stab des Generalkommandos 59
28.05.1918 beim Artilleriedepot Breslau
01.01.1921 in der 14. (r) / Artillerieregiment 3 (Sprottau)
01.11.1921 an der Artillerieschule (Jüterborg)
01.12.1921 beim Zeugamt Berlin-Spandau
02.11.1922 kommandiert zur Inspektion für Waffen und Gerät (bis 30.04.)
30.09.1923 ausgeschieden

1926-1936 Angestellter der Nationalarchiv München Verlags-GmbH
01.07.1931 Eintritt in die NSDAP

24.03.1937 wieder angestellt bei der Luftmunitionsanstalt Lamitsch
01.05.1937 bei der Luftmunitionsanstalt Hesedorf
04.10.1940 stellvertretender Leiter der Luftmunitionsanstalt Rochau
01.02.1941 bei der Luftmunitionsanstalt Krappitz

10.10.1914 EK II
15.02.1921 Schlesischer Adler II. und I. Stufe
15.08.1935 Ehrenkreuz für Frontkämpfer

Major Günther Rall

Günther Rall was born in Gaggenau, the German Empire, in March 1918. Rall grew up in the Weimar Republic. In 1933 the Nazi Party seized power and Rall, deciding upon a military career, joined the Army in 1936 to train as an infantry soldier. Rall transferred to the Luftwaffe soon after and he qualified as a fighter pilot in 1938.

In September 1939 World War II began with the German invasion of Poland. Rall was assigned to Jagdgeschwader 52 (JG 52—52nd Fighter Wing) and flew combat patrols in the Phoney War period on the Western Front. Rall flew combat missions in the Battle of France and Battle of Britain, claiming one enemy aircraft destroyed in May 1940. Rall’s wing sustained heavy casualties and the then-22 year old was appointed to Staffelkapitän (squadron leader). He then served in the Balkans Campaign in April and May 1941 without success.

In June 1941, JG 52 moved to the Eastern Front, where it remained from Operation Barbarossa until the end of the war. Rall claimed his first successes in the air defense of Romania. In November 1941, he was shot down, wounded and invalidated from flying for a year. At this time Rall had claimed 36 aerial victories. His achievements earned him the German Cross in Gold in December 1941.

Rall returned in August 1942 and was awarded the Knight’s Cross of the Iron Cross on 3 September 1942 for 65 enemy aircraft shot down. By 22 October Rall had claimed 100 and received the Knight’s Cross with Oak Leaves. He reached 200 in late August 1943. On 12 September 1943 he was awarded the Knight’s Cross of the Iron Cross with Oak Leaves and Swords, the second highest military award in Nazi Germany at the time of the presentation. By the end of 1943 Rall had achieved over 250, the second flier to do so after Walter Nowotny did in October 1943.

In April 1944 Rall left JG 52 and the Eastern Front. He was given command of II. Gruppe (2nd group) of Jagdgeschwader 11 and served in the Defense of the Reich where he was wounded for a third time. In November 1944 Rall was appointed as an instructor and flew captured Allied fighter aircraft in order to prepare instruction notes on their performance to German fighter pilots. Rall ended the war with an unsuccessful stint commanding Jagdgeschwader 300 (JG 300—300th Fighter Wing) near SalzburgAustria, where he surrendered in May 1945.

During World War II Rall was credited with the destruction of 275 enemy aircraft in 621 combat missions. He was shot down five times and wounded on three occasions.[2] Rall claimed all of his victories in a Messerschmitt Bf 109, though he also flew the Focke-Wulf Fw 190 operationally. All but three of his claims were against Soviet opposition.

Rall joined the West German Air Force in 1956, served as Inspector of the Air Force from 1971 to 1974, and as the German representative to the NATO Military Committee until 1975. After his retirement Rall became a consultant. Among his post-war achievements was the presentation of the Order of Merit of the Federal Republic of Germany. It was awarded to him for his post-1945 service.

Focke-Wulf Fw 190 Würger


The Focke-Wulf Fw 190 Würger (English: Shrike) is a German single-seat, single-engine fighter aircraft designed by Kurt Tank at Focke-Wulf in the late 1930s and widely used during World War II. Along with its well-known counterpart, the Messerschmitt Bf 109, the Fw 190 became the backbone of the Luftwaffe‘s Jagdwaffe (Fighter Force). The twin-row BMW 801 radial engine that powered most operational versions enabled the Fw 190 to lift larger loads than the Bf 109, allowing its use as a day fighterfighter-bomberground-attack aircraft and, to a lesser degree, night fighter.

The Fw 190A started flying operationally over France in August 1941, and quickly proved superior in all but turn radius to the Royal Air Force‘s main front-line fighter, the Spitfire Mk. V,[3] particularly at low and medium altitudes. The 190 maintained superiority over Allied fighters until the introduction of the improved Spitfire Mk. IX.[4] In November/December 1942, the Fw 190 made its air combat debut on the Eastern Front, finding much success in fighter wings and specialised ground attack units called Schlachtgeschwader (Battle Wings or Strike Wings) from October 1943 onwards.

The Fw 190A series’ performance decreased at high altitudes (usually 6,000 m (20,000 ft) and above), which reduced its effectiveness as a high-altitude interceptor. From the Fw 190’s inception, there had been ongoing efforts to address this with a turbosupercharged BMW 801 in the B model, the much longer-nosed C model with efforts to also turbocharge its chosen Daimler-Benz DB 603 inverted V12 powerplant, and the similarly long-nosed D model with the Junkers Jumo 213. Problems with the turbocharger installations on the -B and -C subtypes meant only the D model entered service in September 1944. These high-altitude developments eventually led to the Focke-Wulf Ta 152, which was capable of extreme speeds at medium to high altitudes (755 km/h (408 kn; 469 mph) at 13,500 m (44,300 ft)).[5] While these “long nose” 190 variants and the Ta 152 derivative especially gave the Germans parity with Allied opponents, they arrived too late to affect the outcome of the war.

The Fw 190 was well-liked by its pilots. Some of the Luftwaffe’s most successful fighter aces claimed many of their kills while flying it, including Otto KittelWalter Nowotny and Erich Rudorffer. The Fw 190 provided greater firepower than the Bf 109 and, at low to medium altitude, superior manoeuvrability, in the opinion of German pilots who flew both fighters. It was regarded as one of the best fighter planes of World War II

Genesis[edit]

Between 1934 and 1935 the German Ministry of Aviation (RLM) ran a contest to produce a modern fighter for the rearming LuftwaffeKurt Tank entered the parasol-winged Fw 159 into the contest, against the Arado Ar 80Heinkel He 112 and Messerschmitt Bf 109. The Fw 159 was hopelessly outclassed, and was soon eliminated from the competition along with the Ar 80. The He 112 and Bf 109 were generally similar in design but the 109’s lightweight construction gave it a performance edge the 112 was never able to match. On 12 March 1936 the 109 was declared the winner.

Even before the 109 had entered squadron service, in autumn 1937 the RLM sent out a new tender asking various designers for a new fighter to fight alongside the Bf 109, as Walter Günther had done with his firm’s follow-on to the unsuccessful He 100 and He 112. Although the Bf 109 was an extremely competitive fighter, the Ministry was worried that future foreign designs might outclass it, and wanted to have new aircraft under development to meet these possible challenges.[7] Kurt Tank responded with a number of designs, most based around a liquid-cooled inline engine.

However, it was not until a design was presented using the air-cooled, 14-cylinder BMW 139 radial engine that the Ministry of Aviation’s interest was aroused.[8] As this design used a radial engine, it would not compete with the inline-powered Bf 109 for engines, when there were already too few Daimler-Benz DB 601s to go around.[9] This was not the case for competing designs like the Heinkel He 100 or twin-engined Focke-Wulf Fw 187, where production would compete with the 109 and Messerschmitt Bf 110 for engine supplies. After the war, Tank denied a rumour that he had to “fight a battle” with the Ministry to convince them of the radial engine’s merits.

In contrast to the complex, failure-prone fuselage-mounted main gear legs of the earlier Fw 159, one of the main features of the Fw 190 was its wide-tracked, inwards-retracting landing gear. They were designed to withstand a sink rate of 4.5 metres per second (15 feet per second, 900 feet per minute), double the strength factor usually required. Hydraulic wheel brakes were used.[14] The wide-track undercarriage produced better ground handling characteristics, and the Fw 190 suffered fewer ground accidents than the Bf 109. (The Bf 109’s narrow-track, outwards-retracting landing gear hinged on its wing root structure to help lower weight, but this led to inherent weakness and many failures and ground loops.[14]) The Fw 190’s retractable tail gear used a cable, anchored to the “elbow” at the midpoint of the starboard maingear’s transverse retraction arms, which ran aftwards within the fuselage to the vertical fin to operate the tailwheel retraction function. The tailwheel’s retraction mechanical design possessed a set of pulleys to guide the aforementioned cable to the top of the tailwheel’s oleo strut, pulling it upwards along a diagonal track within the fin, into the lower fuselage[15] — this mechanism was accessible through a prominently visible triangular-shaped hinged panel, on the left side in the fin’s side sheetmetal covering.[16][17] On some versions of the Fw 190 an extended tailwheel oleo strut could be fitted for larger-sized loads (such as bombs or even a torpedo) beneath the fuselage.[18]

Most aircraft of the era used cables and pulleys to operate their controls. The cables tended to stretch, resulting in the sensations of “give” and “play” that made the controls less crisp and responsive, and required constant maintenance to correct. For the new design, the team replaced the cables with rigid pushrods and bearings to eliminate this problem.[b] Another innovation was making the controls as light as possible. The maximum resistance of the ailerons was limited to 3.5 kg (8 lb), as the average man’s wrist could not exert a greater force. The empennage (tail assembly) featured relatively small and well-balanced horizontal and vertical surfaces.[19]

The design team also attempted to minimize changes in the aircraft’s trim at varying speeds, thus reducing the pilot’s workload. They were so successful in this regard that they found in-flight-adjustable aileron and rudder trim tabs were not necessary. Small, fixed tabs were fitted to control surfaces and adjusted for proper balance during initial test flights. Only the elevator trim needed to be adjusted in flight (a feature common to all aircraft). This was accomplished by tilting the entire horizontal tailplane with an electric motor, with an angle of incidence ranging from −3° to +5°.[20]

Another aspect of the new design was the extensive use of electrically powered equipment instead of the hydraulic systems used by most aircraft manufacturers of the time. On the first two prototypes, the main landing gear was hydraulic. Starting with the third prototype, the undercarriage was operated by push buttons controlling electric motors in the wings, and was kept in position by electric up and down-locks.[21] The armament was also loaded and fired electrically. Tank believed that service use would prove that electrically powered systems were more reliable and more rugged than hydraulics, electric lines being much less prone to damage from enemy fire.

Like the Bf 109, the Fw 190 featured a fairly small wing planform with relatively high wing loading. This presents a trade-off in performance. An aircraft with a smaller wing suffers less drag under most flight conditions and therefore flies faster and may have better range. However, it also means the aircraft has a higher stalling speed making it less maneuverable, and also reduces performance in the thinner air at higher altitudes. The wings spanned 9.5 m (31 ft 2 in) and had an area of 15 m2 (161 ft2). The wing was designed using the NACA 23015.3 airfoil at the root and the NACA 23009 airfoil at the tip.[22]

Earlier aircraft designs generally featured canopies consisting of small plates of perspex (called Plexiglas in the United States) in a metal “greenhouse” framework, with the top of the canopy even with the rear fuselage – this was true of the IJNAS Mitsubishi A6M Zero, whose otherwise “all-around view” canopy was still heavily framed. This design considerably limited visibility, especially to the rear. The introduction of vacuum forming led to the creation of the “bubble canopy” which was largely self-supporting, and could be mounted over the cockpit, offering greatly improved all-round visibility. Tank’s design for the Fw 190 used a canopy with a frame that ran around the perimeter, with only a short, centerline seam along the top, running rearward from the radio antenna fitting where the three-panel windscreen and forward edge of the canopy met, just in front of the pilot.

The eventual choice of the BMW 801 14-cylinder radial over the more troublesome BMW 139 also brought with it a BMW-designed cowling “system” which integrated the radiator used to cool the motor oil. An annular, ring-shaped oil cooler core was built into the BMW-provided forward cowl, just behind the fan. The outer portion of the oil cooler’s core was in contact with the main cowling’s sheet metal. Comprising the BMW-designed forward cowl, in front of the oil cooler was a ring of metal with a C-shaped cross-section, with the outer lip lying just outside the rim of the cowl, and the inner side on the inside of the oil cooler core. Together, the metal ring and cowling formed an S-shaped duct with the oil cooler’s core contained between them. Airflow past the gap between the cowl and outer lip of the metal ring produced a vacuum effect that pulled air from the front of the engine forward across the oil cooler core to provide cooling for the 801’s motor oil. The rate of cooling airflow over the core could be controlled by moving the metal ring in order to open or close the gap. The reasons for this complex system were threefold. One was to reduce any extra aerodynamic drag of the oil radiator, in this case largely eliminating it by placing it within the same cowling as the engine. The second was to warm the air before it flowed to the radiator to aid warming the oil during starting. Finally, by placing the radiator behind the fan, cooling was provided even while the aircraft was parked. The disadvantage to this design was that the radiator was in an extremely vulnerable location, and the metal ring was increasingly armoured as the war progressed.[

Variants

First prototypes (BMW 139)[edit]

Fw 190 V1 in its original form with the streamlined engine cowling and ducted spinner. The pointed tip of the internal spinner can also be seen. Pilot is probably Hans Sander.Fw 190 V1(civil registration D-OPZE), powered by a 1,550 PS (1,529 hp, 1,140 kW) BMW 139 14-cylinder two-row radial engine.[8]D-OPZE first flew on 1 June 1939.[24]Fw 190 V2Designated with the Stammkennzeichen alphabetic ID code of FL+OZ (later RM+CB) the V2 first flew on 31 October 1939 and was equipped from the outset with the new spinner and cooling fan. It was armed with one Rheinmetall-Borsig 7.92 mm (.312 in) MG 17 machine gun and one 13 mm (.51 in) synchronized MG 131 machine gun in each wing root.[25]Fw 190 V3AbandonedFw 190 V4Abandoned

Later prototypes (BMW 801)[edit]

Fw 190 V5k. This is the V5 with the original small wing. The 12-blade cooling fan and redesigned undercarriage and canopy fairings are visible.Fw 190 V5Fitted with the larger, more powerful 14-cylinder two-row BMW 801 radial engine. This engine introduced a pioneering example of an engine management system called the Kommandogerät (command-device) designed by BMW, who also designed the 801’s forward cowling with its integral oil cooling system:[23] the Kommandogerät functioned in effect as an electro-mechanical computer which set mixture, propeller pitch (for the constant-speed propeller), boost, and magneto timing.[26]Fw 190 V5k(kleine Fläche — small surface) The smaller span initial variant re-designated after the longer span wing was fitted. The V5 first flew in the early spring of 1940. The weight increase with all of the modifications was substantial, about 635 kg (1,400 lb), leading to higher wing loading and a deterioration in handling. Plans were made to create a new wing with more area to address these issues.[27]Fw 190 V5g(große Fläche — large surface) In August 1940 a collision with a ground vehicle damaged the V5 and it was sent back to the factory for major repairs. This was an opportune time to rebuild it with a new wing which was less tapered in plan than the original design, extending the leading and trailing edges outward to increase the area. The new wing had an area of 18.30 m2 (197 ft2), and now spanned 10.506 m (34 ft 5 in). After conversion, the aircraft was called the V5g for große Fläche (large surface). Although it was 10 km/h (6 mph) slower than when fitted with the small wing, V5g was much more manoeuvrable and had a faster climb rate.[27] This new wing platform was to be used for all major production versions of the Fw 190.[25]

Fw 190 A[edit]

Side-view of Fw 190 A-0Fw 190 A-0The pre-production Fw 190 A-0 series was ordered in November 1940, a total of 28 being completed. Because they were built before the new wing design was fully tested and approved, the first nine A-0s retained the original small wings. All were armed with six 7.92 mm (.312 in) MG 17 machine guns — four synchronised weapons, two in the forward fuselage and one in each wing root, supplemented by a free-firing MG 17 in each wing, outboard of the propeller disc.[25]Fw 190 A-0s or A-1s of an unknown unit in France.Fw 190 A-1The Fw 190 A-1 was in production from June 1941. It was powered by the BMW 801 C-1 engine, rated at 1,560 PS (1,539 hp, 1,147 kW) for take-off. Armament included two fuselage-mounted 7.92 mm (.312 in) MG 17s and two wing root-mounted 7.92 mm (.312 in) MG 17s (with all four MG 17s synchronized to fire through the propeller arc) and two outboard wing-mounted 20 mm MG FF/Ms.[28]Side-view of Fw 190 A-2; the most notable change over the A-0 was the addition of three vertical cooling slits on the engine cowling, just forward of the wing.Fw 190 A-2The introduction of the BMW 801 C-2 resulted in the Fw 190 A-2 model, first introduced in October 1941.[29] The A-2 wing weaponry was updated, with the two wing root-mounted 7.92 mm (.312 in) MG 17s being replaced by 20 mm MG 151/20E cannon.[30]Fw 190A-3 of JG 1 in the Netherlands, summer 1942.Fw 190 A-3The Fw 190 A-3 was equipped with the BMW 801 D-2 engine, which increased power to 1,700 PS (1,677 hp, 1,250 kW) at takeoff.[29] The A-3 retained the same weaponry as the A-2.[31]Fw 190 A-3/Umrüst-Bausatz 1 (/U1) — (W.Nr 130 270) was the first 190 to have the engine mount extended by 15 cm (6 in), which would be standardized on the later production A-5 model.[32]Fw 190 A-3/U2 — The A-3/U2 (W.Nr 130386) had RZ 65 73 mm (2.87 in) rocket launcher racks under the wings with three rockets per wing. There were also a small number of U7 aircraft tested as high-altitude fighters armed with only two 20 mm MG 151 cannon, but with reduced overall weight.[32]Fw 190 A-3/U3 — The A-3/U3 was the first of the Jabo (Jagdbomber), using an ETC-501 centre-line bomb rack able to carry up to 500 kg (1,100 lb) of bombs or, with horizontal stabilising bars, one 300 L (80 US gal) standard Luftwaffe drop tank. The U3 retained the fuselage-mounted 7.92 mm (.312 in) MG 17s and the wing-mounted 20 mm MG 151 cannon, with the outer MG FF being removed.[32]Fw 190 A-3/U4 — The A-3/U4 was a reconnaissance version with two RB 12.5 cameras in the rear fuselage and a EK 16 gun camera or a Robot II miniature camera in the leading edge of the port wing root. Armament was similar to the U3, however, and the ETC 501 was usually fitted with the standardized Luftwaffe 300 litre-capacity (80 US gal) drop tank.[32]Fw 190 A-3a(a=ausländisch — foreign) In autumn 1942, 72 new aircraft were delivered to Turkey in an effort to keep that country friendly to the Axis powers. These were designated Fw 190 A-3a, designation for export models and delivered between October 1942 and March 1943.[32]A captured Fw 190A-4. The USAAF-painted Balkenkreuz and swastika markings are of nonstandard size and proportions.Fw 190 A-4Introduced in July 1942, the A-4 was equipped with the same engine and basic armament as the A-3.Fw 190 A-4/Rüstsatz 6 (/R6) — Some A-4s were fitted with a pair of under-wing Werfer-Granate 21 (BR 21) rocket mortars, and were designated Fw 190 A-4/R6.Fw 190 A-4/U1 — The A-4/U1 was outfitted with an ETC 501 rack under the fuselage. All armament except the MG 151 cannon was removed.Fw 190 A-4/U3 — The A-4/U3 was very similar to the U1, and later served as the prototype for the Fw 190 F-1 assault fighter.Fw 190 A-4/U4 — The A-4/U4 was a reconnaissance fighter, with two Rb 12.4 cameras in the rear fuselage and an EK 16 or Robot II gun camera. The U4 was equipped with fuselage-mounted 7.92 mm (.312 in) MG 17s and 20 mm MG 151 cannon.Fw 190 A-4/U7 — The A-4/U7 was a high-altitude fighter, easily identified by the compressor air intakes on either side of the cowling. Adolf Galland flew a U7 in the spring of 1943.Fw 190 A-4/U8 — The A-4/U8 was the Jabo-Rei (Jagdbomber Reichweite, long-range fighter-bomber), adding twin standard Luftwaffe 300 L (80 US gal) drop tanks, one under each wing, on VTr-Ju 87 racks with duralumin fairings produced by Weserflug, and a centreline bomb rack. The outer wing-mounted 20 mm MG FF/M cannon and the cowling-mounted 7.92 mm (.312 in) MG 17 were removed to save weight. The A-4/U8 was the precursor of the Fw 190 G-1.Fw 190 A-4/R1 — The A-4/R1, was fitted with a FuG 16ZY radio set with a Morane “whip” aerial fitted under the port wing. These aircraft, called Leitjäger or Fighter Formation Leaders, could be tracked and directed from the ground via special R/T equipment called Y-Verfahren (Y-Control). More frequent use of this equipment was made from the A-5 onwards.[33]Captured Fw 190A-5 Werknummer 150 051, in U.S. Navy colorsFw 190 A-5The A-5 was developed after it was determined that the Fw 190 could easily carry more ordnance. The D-2 engine was moved forward another 15 cm (6 in) as had been tried out earlier on the service test A-3/U1 aircraft, moving the centre of gravity forward to allow more weight to be carried aft.Fw 190 A-5/U2 — The A-5/U2 was designed as a night Jabo-Rei and featured anti-reflective fittings and exhaust flame dampers. A centre-line ETC 501 rack typically held a 250 kg (550 lb) bomb, and wing-mounted racks mounted 300 L drop tanks. A EK16 gun camera, as well as landing lights, were fitted to the wing leading edge. The U2 was armed with only two 20 mm MG 151 cannon.Fw 190 A-5/U3 — The A-5/U3 was a Jabo fighter fitted with ETC 501s for drop tanks and bombs; it too featured only two MG 151s for armament.Fw 190 A-5/U4 — The A-5/U4 was a “recon” fighter with two RB 12.5 cameras and all armament of the basic A-5 with the exception of the MG FF cannon.Fw 190 A-5/U8 — The A-5/U8 was another Jabo-Rei outfitted with SC-250 centreline-mounted bombs, under-wing 300-litre drop tanks and only two MG 151s; it later became the Fw 190 G-2.Fw 190 A-5/U9 — Test installation of the A-7 modifications.Fw 190 A-5/U12 — A special U12 was created for bomber attack, outfitted with the standard 7.92 mm (.312 in) MG 17 and 20 mm MG 151 but replacing the outer wing 20 mm MG-FF cannon with two underwing gun pods containing two 20 mm MG 151/20 each, for a total of two machine guns and six cannon.Fw 190 A-5/R11 — The A-5/R11 was a night fighter conversion fitted with FuG 217 Neptun (Neptune) radar equipment with arrays of three dipole antenna elements vertically mounted fore and aft of the cockpit and above and below the wings. Flame-dampening boxes were fitted over the exhaust exits. 1,752 A-5s were built from November 1942 to June 1943.[34]Fw 190 A-6The A-6 was developed to address shortcomings found in previous “A” models when attacking U.S. heavy bombers. A structurally redesigned and lighter wing was introduced and the normal armament was increased to two MG 17 fuselage machine guns and four 20 mm MG 151/20E wing root and outer wing cannon with larger ammunition boxes.Fw 190 A-7The A-7 entered production in November 1943, equipped with the BMW 801 D-2 engine, again producing 1,700 PS (1,677 hp, 1,250 kW) and two fuselage-mounted 13 mm (.51 in) MG 131s, replacing the MG 17s.[35]An Fw 190 A-8/R2 in American hands. “White 11” of 5./JG 4 was captured during Operation Bodenplatte after its engine had been damaged by American light flak.Fw 190 A-8The A-8 entered production in February 1944, powered either by the standard BMW 801 D-2 or the 801Q (also known as 801TU). The 801Q/TU, with the “T” signifying a Triebwerksanlageunitized powerplant installation, was a standard 801D with improved, thicker armour on the BMW-designed front annular cowling, which still incorporated the BMW-designed oil cooler, upgraded from 6 mm (.24 in) on earlier models to 10 mm (.39 in). Changes introduced in the Fw 190 A-8 also included the C3-injection Erhöhte Notleistung emergency boost system to the fighter variant of the Fw 190 A (a similar system with less power had been fitted to some earlier Jabo variants of the 190 A), raising power to 1,980 PS (1,953 hp, 1,456 kW) for 10 minutes. The 10 minute emergency power may be used up to three times per mission with a 10 minute cooldown in “combat power” between each 10 minute use of emergency power.[36]Fw 190A-8 with the under-wing WGr 21 rocket-propelled mortar. The weapon was developed from the 21 cm Nebelwerfer 42 infantry weapon.Fw 190 A-8/R2 — The A-8/R2 replaced the outer wing 20 mm cannon with a 30 mm (1.18 in) MK 108 cannon.Fw 190 A-8/R4 — The A-8/R4 featured GM1 nitrous boost to the standard BMW 801 D/Q engine. GM1 (nitrous oxide) injection increased power for short amounts of time, up to 10 minutes at a time. A 20 minute supply was usually carried.Fw 190 A-8/R8 — The A-8/R8 was similar to the A-8/R2, but fitted with heavy armour including 30 mm (1.18 in) canopy and windscreen armour and 5 mm (.2 in) cockpit armour.[37]Fw 190 A-9First built in September 1944, the Fw 190 A-9 was fitted with the new BMW 801S rated at 2,000 PS (1,973 hp, 1,471 kW); the more powerful 2,400 PS (2,367 hp, 1,765 kW) 801F-1 was still under development, and not yet available.[38][39]Fw 190 A-10Late in the war, the A-10 was fitted with larger wings for better maneuverability at higher altitudes, which could have allowed additional 30 mm (1.18 in) calibre, long-barreled MK 103 cannon to be fitted.[40]

A total of 13,291 Fw 190 A-model aircraft were produced.[41]

A-6, A-7, and A-8 were modified for Sturmböcke bomber-destroyer operations.

High-altitude developments[edit]

The Fw 190C V18 prototype, with large ventral “pouch” fairing for the turbocharger installation and broader-chord vertical fin/rudder.

Tank started looking at ways to address the altitude performance problem early in the program. In 1941, he proposed a number of versions featuring new powerplants, and he suggested using turbochargers in place of superchargers. Three such installations were outlinedFw 190 V12(an A-0) would be outfitted with many of the elements which eventually led to the B series.Fw 190 V13(W.Nr. 0036) first C-series prototypeFw 190 V15(W.Nr. 0036) second C-series prototypeFw 190 V16(W.Nr. 0036) third C-series prototypeFw 190 V18(W.Nr. 0036) fourth C-series prototypeFw 190 B-0With a turbocharged BMW 801Fw 190 B-1This aircraft was similar to the B-0, but had slightly different armament. In its initial layout, the B-1 was to be fitted with four 7.92 mm (.312 in) MG 17s and two 20 mm MG-FFs. One was fitted with two MG 17s, two 20 mm MG 151s and two 20 mm MG-FFs. After the completion of W.Nr. 811, no further Fw 190 B models were ordered.An early production Fw 190 D-9 at the Cottbus plant. Note the early canopy and redesigned, simplified centreline rack carrying a 300 L drop tank.[42]Fw 190 CWith a turbocharged Daimler-Benz DB 603, the tail of the aircraft had to be lengthened in order to maintain the desired centre of gravity. Four additional prototypes based on the V18/U1 followed: V29, V30, V32 and V33.Fw 190 DThe Fw 190 D (nicknamed Dora; or Long-Nose Dora (“Langnasen-Dora”) was intended as the high-altitude performance version of the A-series.Fw 190 D-0The first D-0 prototype was completed in October 1942 with a supercharged Junkers Jumo 213 including a pressurized cockpit and other features making them more suitable for high-altitude work.[43]This captured Fw 190 D-9 appears to be a late production aircraft built by Fieseler at Kassel. It has a late style canopy; the horizontal black stripe with white outline shows that this was a II. Gruppe aircraft.Fw 190 D-1Initial productionFw 190 D-2Initial productionFw 190 D-9The D-9 series was rarely used against heavy-bomber raids, as the circumstances of the war in late 1944 meant that fighter-versus-fighter combat and ground attack missions took priority.[44][44][45][46] This model was the basis for the follow-on Focke-Wulf Ta 152 aircraft.Fw 190 D-11Fitted with the up-rated Jumo 213F series engine similar to the Jumo 213E used in the Ta-152 H series but minus the intercooler. Two 30 mm (1.18 in) MK 108 cannons were installed in the outer wings to complement the 20 mm MG 151s in the inboard positions.[47]Fw 190 D-13/R11, Champlin Fighter Museum, Phoenix, Arizona (c.1995)Fw 190 D-12Similar to the D-11, but featured the 30 mm (1.18 in) MK 108 cannon in a Motorkanone installation firing through the propeller hub.Fw 190 D-13The D-13 would be fitted with a 20 mm MG 151/20 motor cannon.

Combat history

The Fw 190 participated on every major combat front where the Luftwaffe operated after 1941, and did so with success in a variety of roles.

Production
A 0.40 km2 (100 acre) Focke-Wulf plant east of Marienburg was bombed by the Eighth Air Force on 9 October 1944.[51] In addition, one of the most important sub-contractors for the radial-engined Fw 190s was AGO Flugzeugwerke, which from 1941 through to the end of the war produced enough Fw 190s to earn it major attention from the USAAF, with the AGO plant in Oschersleben being attacked at least five times during the war from 1943 onwards.